Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
ACS Omega ; 9(17): 18995-19002, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708206

RESUMEN

Fabric phase sorptive extraction (FPSE) is a simple microextraction technique that allows analytes to be rescued from matrix components while using a small volume of samples to analyze complex biological systems. This study used FPSE as a microextraction tool and a sample storage and transfer device. Levofloxacin as a model molecule was applied intravenously (IV) to New Zealand male rabbits. The samples were simultaneously extracted by using FPSE and protein precipitation methods. The final solutions were analyzed using LC-MS equipped with an ACE C18 LC Column (150 mm × 4.6 mm, 5 µm) at 25 °C employed in isocratic elution mode using solution A (0.1% formic acid in water)/solution B (0.1% formic acid in acetonitrile) (80:20, v/v). The total analysis time was less than 15 min. The developed method was validated using the ICH M10 bioanalytical method validation and study sample analysis guidelines. The results obtained using FPSE were statistically identical to those obtained using protein precipitation. The plasma samples applied onto FPSE (10 µL onto 1.0 cm × 1.0 cm Biofluid Sampler) were stored in three different temperatures [refrigerator (2-8 °C), at ambient temperature (20 ± 5 °C), and in the stability cabinet (40 °C, 75% humidity)] and three different storage conditions (Eppendorf tubes, plastic containers, and straw paper envelopes). Levofloxacin in plasma samples adsorbed by FPSE biofluid sampler remained stable at 2-8 °C in Eppendorf tubes for at least 1 week. This study showed that FPSE could be used as a sample storage and transfer device for pharmacokinetic applications that need to work with small sample volumes and discard aggressive cold chains to store and transfer the plasma samples.

2.
Front Allergy ; 5: 1366596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533355

RESUMEN

Since the advent of the Universal Detector Calibrant (UDC) by scientists at Florida International University in 2013, this tool has gone largely unrecognized and under-utilized by canine scent detection practitioners. The UDC is a chemical that enables reliability testing of biological and instrumental detectors. Training a biological detector, such as a scent detection canine, to respond to a safe, non-target, and uncommon compound has significant advantages. For example, if used prior to a search, the UDC provides the handler with the ability to confirm the detection dog is ready to work without placing target odor on site (i.e., a positive control), thereby increasing handler confidence in their canine and providing documentation of credibility that can withstand legal scrutiny. This review describes the UDC, summarizes its role in canine detection science, and addresses applications for UDC within scent detection canine development, training, and testing.

3.
J Chromatogr A ; 1717: 464674, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38290172

RESUMEN

In this research, a sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent-based capsule phase microextraction (CPME) device was developed in combination with liquid chromatography-post column derivatization for the first ever reported determination of a somatostatin analogue - lanreotide in human urine. The sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent was encapsulated in the lumen of a polypropylene capillary tube and characterized by FT-IR spectroscopy and SEM with energy dispersive X-ray spectroscopy (EDS). The main steps of the CPME workflow were optimized to obtain high extraction efficiency for the target analyte. After the separation of the analyte on a C8 stationary phase, the peptide was derivatized online with o-phthalaldehyde before the fluorescence detection. The main experimental parameters of CPME and the post-column procedures were systematically investigated and optimized. The method was validated in terms of selectivity, linearity, accuracy, precision, limits of detection (LOD), and limits of quantification (LOQ). The relative bias ranged between 88.8 and 115.6 % for the peptide, while the RSD values for repeatability and intermediate precision were less than 14.3 %. The achieved limit of detection (LOD) was 0.2 µΜ while the limit of quantitation (LOQ) was established as 0.9 µΜ. Finally, the sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent-based microextraction capsules were found to be reusable for at least 20 extractions. The developed method presented adequate overall performance, and it could be applied in the analysis of selected peptide in human urine samples.


Asunto(s)
Líquidos Iónicos , Microextracción en Fase Líquida , Somatostatina/análogos & derivados , Humanos , Cromatografía Líquida de Alta Presión/métodos , Polietilenglicoles , Líquidos Iónicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Microextracción en Fase Sólida/métodos , Péptidos Cíclicos , Límite de Detección
4.
Anal Bioanal Chem ; 416(2): 439-448, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37946037

RESUMEN

In the present study, a homemade mixed-mode ion-exchange sorbent based on silica with embedded graphene microparticles is applied for the selective extraction of 2-aminobenzothiazole (NH2BT) followed by determination through liquid chromatography coupled to high-resolution mass spectrometry. The sorbent was evaluated for the solid-phase extraction of NH2BT from environmental water samples (river, effluent wastewater, and influent wastewater), and NH2BT was strongly retained through the selective cation-exchange interactions. Therefore, the inclusion of a clean-up step of 7 mL of methanol provided good selectivity for the extraction of NH2BT. The apparent recoveries obtained for environmental water samples ranged from 62 to 69% and the matrix effect from -1 to -14%. The sorbent was also evaluated in the clean-up step of the organic extract for the extraction of NH2BT from organic extracts of indoor dust samples (10 mL of ethyl acetate from pressurized liquid extraction) and fish (10 mL of acetonitrile from QuEChERS extraction). The organic extracts were acidified (adding a 0.1% of formic acid) to promote the cation-exchange interactions between the sorbent and the analyte. The apparent recoveries for fish samples ranged from 22 to 36% depending on the species. In the case of indoor dust samples, the recovery was 41%. It should be highlighted the low matrix effect encountered in such complex samples, with values ranging from -7 to 5% for fish and dust samples. Finally, various samples were analyzed. The concentration in river samples ranged from 31 to 136 ng/L; in effluent wastewater samples, from 55 to 191 ng/L; in influent wastewater samples, from 131 to 549 ng/L; in fish samples, from 14 to 57 ng/g dried weight; and in indoor dust samples, from

Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Animales , Espectrometría de Masas en Tándem/métodos , Aguas Residuales , Agua/análisis , Polvo/análisis , Contaminantes Químicos del Agua/análisis , Extracción en Fase Sólida/métodos , Peces , Cationes/análisis
5.
Mikrochim Acta ; 190(11): 428, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796344

RESUMEN

A sol-gel Carbowax 20 M/3-[(3-Cholamidopropyl) dimethyl ammonio]-1-propanesulfonate composite sorbent-based capsule phase microextraction device has been fabricated and characterized for the determination of four statins (pravastatin, rosuvastatin, pitavastatin, and atorvastatin) in human urine. The presence of ionizable carboxyl functional groups in statins requires pH adjustment of the sample matrix to ensure that the target molecules are in their protonated form (pH should be 2 units below their pKa values) which not only is cumbersome but also risks unintended contamination of the sample. This challenge was addressed by introducing zwitterionic ionic liquid in addition to neutral, polar Carbowax 20 M polymer in the sol-gel-derived composite sorbent. As such, the composite zwitterionic multi-modal sorbent can simultaneously extract neutral, cationic, and anionic species. This particular attribute of the composite sorbent eliminates the necessity of the matrix pH adjustment and consequently simplifies the overall sample preparation workflow. Various experimental parameters such as the sample amount, extraction time, salt addition, stirring rate, and elution solvent type that may affect the extraction performance of the statins were investigated using a central composite design and the one-parameter-at-a-time approach. The analytes and the internal standard were separated on a C18 column with gradient elution using phosphate buffer (20 mM, pH 3) and acetonitrile as mobile phase. The analytes were detected at 237 nm. The method was validated, and linearity was observed in the range 0.10-2.0 µg mL-1 for all compounds. The method precision was better 9.9% and 10.4% for intra-day and inter-day, respectively, while the relative recoveries were acceptable, ranging between 83.4 and 116% in all cases. Method greenness was assessed using the ComplexGAPI index. Finally, the method's applicability was demonstrated in the determination of the statins in authentic human urine after oral administration of pitavastatin and rosuvastatin-containing tablets.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Líquidos Iónicos , Humanos , Polietilenglicoles , Rosuvastatina Cálcica , Lípidos
6.
J Chromatogr A ; 1708: 464366, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716085

RESUMEN

Fabric Phase Sorptive Extraction (FPSE) combined with high pressure liquid chromatography using to diode array detection (HPLC-DAD) was applied for the simultaneous determination of bisphenols (BPA, BPB, BPC, BPE, BPF, BPS) in juice pouches. The FPSE procedure was optimized with regards to the critical parameters that affect the performance of the method including the selection of the FPSE membrane type and size, adsorption time, extraction time, solvent volume desorption, magnetic stirring ratio, and salt addition. The FPSE membrane could be reused up to 14 times. The developed FPSE-HPLC-DAD method was validated in terms of linearity, sensitivity, accuracy andprecision. The limits of detection (LODs) were lower than 6.9 ng/mL, while the limits of quantification (LOQs) were lower than 21 ng/mL. The results obtained are satisfactory in terms of precision, accuracy and repeatability, with recoveries above 86% and CV values below 9.5%. The FPSE-HPLC-DAD method was successfully applied in the determination of six bisphenols in juice samples stored in pouches.


Asunto(s)
Alimentos , Cloruro de Sodio Dietético , Cromatografía Líquida de Alta Presión , Adsorción
7.
PLoS One ; 18(7): e0286452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405979

RESUMEN

The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Masculino , Femenino , Animales , Perros , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Odorantes/análisis , Análisis Discriminante
8.
Anal Chim Acta ; 1268: 341400, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268341

RESUMEN

The proof-of-concept of an integrated automatic foam microextraction lab-in-syringe (FME-LIS) platform coupled to high performance liquid chromatography is presented. Three different sol-gel coated foams were synthesized, characterized, and conveniently packed inside the glass barrel of the LIS syringe pump, as an alternative approach for sample preparation, preconcentration and separation. The proposed system efficiently combines the inherent benefits of lab-in-syringe technique, the good features of sol-gel sorbents, the versatile nature of foams/sponges, as well as the advantages of automatic systems. Bisphenol A (BPA) was used as model analyte, due to the increasing concern for the migration of this compound from household containers. The main parameters that affect the extraction performance of the system were optimized and the proposed method was validated. The limit of detection for BPA were 0.5 and 2.9 µg L-1, for a sample volume of 50 mL and 10 mL, respectively. The intra-day precision was <4.7% and the inter-day precision was <5.1% in all cases. The performance of the proposed methodology was evaluated for the migration studies of BPA using different food simulants, as well as for the analysis of drinking water. Good method applicability was observed based on the relative recovery studies (93-103%).

9.
Food Chem ; 424: 136423, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37247598

RESUMEN

In this work, different sol-gel sorbent-coated second-generation fabric phase sorptive extraction (FPSE) membranes were synthesized using titania-based sol-gel precursors. The proposed membranes were tested for their efficiency to extract eleven selected organophosphorus pesticides (OPPs) from apple juice samples. Among the examined materials, sol-gel C18 coated titania-based FPSE membranes showed the highest extraction efficiency. These membranes were used for the optimization and validation of an FPSE method prior to analysis by gas chromatography-mass spectrometry. The detection limits for OPPs ranged between 0.03 and 0.08 ng mL-1. Moreover, the relative standard deviation was < 8.2% and 8.4% for intra-day and inter-day studies, respectively. The relative recoveries were 91-110% (intra-day study) and 90-106% (inter-day study) for all the target analytes, demonstrating good overall method accuracy. Moreover, the novel membranes were reusable at least 5 times. The titania-based membranes were compared to the conventional silica-based membranes and their utilization resulted in higher extraction recoveries.


Asunto(s)
Malus , Plaguicidas , Cromatografía de Gases y Espectrometría de Masas/métodos , Plaguicidas/análisis , Compuestos Organofosforados/análisis
10.
Molecules ; 28(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903348

RESUMEN

Sol-gel graphene oxide-coated polyester fabric platforms were synthesized and used for the on-line sequential injection fabric disk sorptive extraction (SI-FDSE) of toxic (i.e., Cd(II), Cu(II) and Pb(II)) metals in different distilled spirit drinks prior to their determination by electrothermal atomic absorption spectrometry (ETAAS). The main parameters that could potentially influence the extraction efficiency of the automatic on-line column preconcentration system were optimized and the SI-FDSE-ETAAS method was validated. Under optimum conditions, enhancement factors of 38, 120 and 85 were achieved for Cd(II), Cu(II) and Pb(II), respectively. Method precision (in terms of relative standard deviation) was lower than 2.9% for all analytes. The limits of detection for Cd(II), Cu(II) and Pb(II) were 1.9, 7.1 and 17.3 ng L-1, respectively. As a proof of concept, the proposed protocol was employed for the monitoring of Cd(II), Cu(II), and Pb(II) in distilled spirit drinks of different types.


Asunto(s)
Cadmio , Grafito , Plomo
11.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903374

RESUMEN

Nowadays, it is vital to have new, complete, and rapid methods to screen and follow pharmacotoxicological and forensic cases. In this context, an important role is undoubtedly played by liquid chromatography-tandem mass spectrometry (LC-MS/MS) thanks to its advanced features. This instrument configuration can offer comprehensive and complete analysis and is a very potent analytical tool in the hands of analysts for the correct identification and quantification of analytes. The present review paper discusses the applications of LC-MS/MS in pharmacotoxicological cases because it is impossible to ignore the importance of this powerful instrument for the rapid development of pharmacological and forensic advanced research in recent years. On one hand, pharmacology is fundamental for drug monitoring and helping people to find the so-called "personal therapy" or "personalized therapy". On the other hand, toxicological and forensic LC-MS/MS represents the most critical instrument configuration applied to the screening and research of drugs and illicit drugs, giving critical support to law enforcement. Often the two areas are stackable, and for this reason, many methods include analytes attributable to both fields of application. In this manuscript, drugs and illicit drugs were divided in separate sections, with particular attention paid in the first section to therapeutic drug monitoring (TDM) and clinical approaches with a focus on central nervous system (CNS). The second section is focused on the methods developed in recent years for the determination of illicit drugs, often in combination with CNS drugs. All references considered herein cover the last 3 years, except for some specific and peculiar applications for which some more dated but still recent articles have been considered.


Asunto(s)
Drogas Ilícitas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Medicina Legal , Monitoreo de Drogas
12.
Talanta ; 258: 124482, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989615

RESUMEN

In this study, a simple and rapid fabric phase sorptive extraction (FPSE) protocol combined with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was developed for the monitoring of salivary vitamin B12 levels. Different sol-gel coated cellulose and polyester membranes were evaluated and sol-gel Carbowax 20 M coated polyester membranes were chosen for the selective extraction of the target analyte from saliva samples. Face-centered central composite design (FC-CCD) was employed for the investigation and optimization of sample volume, extraction time and stirring rate, while the other experimental factors were investigated using the classical one-factor-at-a- time" (OFAT) method. Validation of the FPSE-HPLC-UV method was conducted according to the FDA guidelines for bioanalytical methodologies. The lower limit of quantification for vitamin B12 was 0.10 µg mL-1 and the linear range was 0.10-10.0 µg mL-1. The relative recoveries for intra-day and inter-day studies were 87.5-113.8% and 88.2-119.2%, respectively. The relative standard deviation was better than 8.2% in all cases, demonstrating good method precision. The sol-gel Carbowax 20 M coated FPSE membranes were found to be reusable for up to 25 times. Finally, the proposed scheme was successfully employed for the quantitation of salivary vitamin B12 at different time points following the administration of sublingual tablets and oral sprays.


Asunto(s)
Polietilenglicoles , Vitamina B 12 , Cromatografía Líquida de Alta Presión/métodos , Vaporizadores Orales , Poliésteres , Comprimidos , Vitaminas
13.
Diagnostics (Basel) ; 13(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36832195

RESUMEN

Since the beginning of the COVID-19 pandemic, there has been enormous interest in the development of measures that would allow for the swift detection of the disease. The rapid screening and preliminary diagnosis of SARS-CoV-2 infection allow for the instant identification of possibly infected individuals and the subsequent mitigation of the disease spread. Herein, the detection of SARS-CoV-2-infected individuals was explored using noninvasive sampling and low-preparatory-work analytical instrumentation. Hand odor samples were obtained from SARS-CoV-2-positive and -negative individuals. The volatile organic compounds (VOCs) were extracted from the collected hand odor samples using solid phase microextraction (SPME) and analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Sparse partial least squares discriminant analysis (sPLS-DA) was used to develop predictive models using the suspected variant sample subsets. The developed sPLS-DA models performed moderately (75.8% (±0.4) accuracy, 81.8% sensitivity, 69.7% specificity) at distinguishing between SARS-CoV-2-positive and negative -individuals based on the VOC signatures alone. Potential markers for distinguishing between infection statuses were preliminarily acquired using this multivariate data analysis. This work highlights the potential of using odor signatures as a diagnostic tool and sets the groundwork for the optimization of other rapid screening sensors such as e-noses or detection canines.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36801529

RESUMEN

Polypharmacy in type 2 diabetes is an issue of major concern as the prescription of multiple medi-cations for the management of diabetes-associated comorbidities can lead to drug-to-drug interactions, which can pose serious risks to patients' health. Within this context, the development of bioanalytical methods for monitoring the therapeutic levels of antidiabetic drugs is notably useful to ensure patients' safety. In the present work, a liquid chromatography-mass spectrometry method for the quantitation of pioglitazone, repaglinide, and nateglinide in human plasma is described. Sample preparation was performed by fabric phase sorptive extraction (FPSE), and hydrophilic interaction liquid chromatography (HILIC) was implemented for the chromatographic separation of the analytes, using a ZIC®-cHILIC analytical column (150 × 2.1 mm, 3 µm) under isocratic elution. The mobile phase consisted of 10 mM ammonium formate aqueous solution (pH = 6.5)/ acetonitrile, 10/90 v/v, and was pumped at a flow rate of 0.2 mL min-1. Design of Experiments was used during the development of the sample preparation method to gain deeper insight into the effect of various experimental parameters on extraction efficiency, their potential interactions and to optimize the recovery rates of the analytes. The linearity of the assay was assessed over the ranges of 25 to 2000, 6.25 to 500, and 125 to 10000 ng mL-1 for pioglitazone, repaglinide, and nateglinide, respectively. The presented method was fully validated and can be used for the therapeutic monitoring of the targeted analytes in human plasma samples.


Asunto(s)
Diabetes Mellitus Tipo 2 , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Nateglinida , Pioglitazona , Monitoreo de Drogas , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía Líquida de Alta Presión
15.
J Pharm Biomed Anal ; 223: 115131, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36395627

RESUMEN

A fast procedure obtained by the combination of fabric phase extraction (FPSE) with high performance liquid chromatography (HPLC) has been developed and validated for the quantification of favipiravir (FVP) in human plasma and breast milk. A sol-gel polycaprolactone-block-polydimethylsiloxane-block-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated on 100% cellose cotton fabric was selected as the most efficient membrane for FPSE in human plasma and breast milk samples. HPLC-UV analysis were performed using a RP C18 column under isocratic conditions. Under these optimezed settings, the overall chromatographic analysis time was limited to only 5 min without encountering any observable matrix interferences. Following the method validation procedure, the herein assay shows a linear calibration curve over the range of 0.2-50 µg/mL and 0.5-25 µg/mL for plasma and breast milk, respectively. The method sensitivities in terms of limit of detection (LOD) and limit of quantification (LOQ), validated in both the matrices, have been found to be 0.06 and 0.2 µg/mL for plasma and 0.15 and 0.5 µg/mL for milk, respectively. Intraday and interday precision and trueness, accordingly to the International Guidelines, were validated and were below 3.61% for both the matrices. The herein method was further tested on real samples in order to highlight the applicability and the advantage for therapeutic drug monitoring (TDM) applications. To the best of our knowledge, this is the first validated FPSE-HPLC-UV method in human plasma and breast milk for TDM purposes applied on real samples. The validated method provides fast, simple, cost reduced, and sensitive assay for the direct quantification of favipiravir in real biological matrices, also appliyng a well-known rugged and cheap instrument configuration.


Asunto(s)
Leche Humana , Pirazinas , Femenino , Humanos , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección
16.
Biosensors (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421122

RESUMEN

The spread of SARS-CoV-2, which causes the disease COVID-19, is difficult to control as some positive individuals, capable of transmitting the disease, can be asymptomatic. Thus, it remains critical to generate noninvasive, inexpensive COVID-19 screening systems. Two such methods include detection canines and analytical instrumentation, both of which detect volatile organic compounds associated with SARS-CoV-2. In this study, the performance of trained detection dogs is compared to a noninvasive headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) approach to identifying COVID-19 positive individuals. Five dogs were trained to detect the odor signature associated with COVID-19. They varied in performance, with the two highest-performing dogs averaging 88% sensitivity and 95% specificity over five double-blind tests. The three lowest-performing dogs averaged 46% sensitivity and 87% specificity. The optimized linear discriminant analysis (LDA) model, developed using HS-SPME-GC-MS, displayed a 100% true positive rate and a 100% true negative rate using leave-one-out cross-validation. However, the non-optimized LDA model displayed difficulty in categorizing animal hair-contaminated samples, while animal hair did not impact the dogs' performance. In conclusion, the HS-SPME-GC-MS approach for noninvasive COVID-19 detection more accurately discriminated between COVID-19 positive and COVID-19 negative samples; however, dogs performed better than the computational model when non-ideal samples were presented.


Asunto(s)
COVID-19 , Odorantes , Perros , Animales , Odorantes/análisis , COVID-19/diagnóstico , SARS-CoV-2 , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos
17.
Anal Chem ; 94(38): 12943-12947, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36098462

RESUMEN

A novel dual lab-in-syringe flow-batch (D-LIS-FB) platform for automatic fabric-disk-in-syringe sorptive extraction followed by oxidative back-extraction as a front end to inductively coupled plasma atomic emission spectrometry (ICP-AES) is presented for the first time. Sol-gel poly(caprolactone)-poly(dimethylsiloxane)-poly(caprolactone)-coated polyester fabric disks were packed at the top of the glass barrel of a microsyringe pump as an alternative to column preconcentration. Herein lie multiple significant advantages including effectiveness, compactness, lower back-pressure, and lower time of analysis. Copper, lead, and cadmium were used as model analytes for the exploration of the capabilities of the developed platform. The online retained metal-diethyldithiophosphate complexes were eluted using diisopropyl ketone prior to atomization. Undesirable incompatibility of organic solvents for direct injection into the ICP-AES system was overcome ingeniously in a flow manner by oxidative back-extraction of the analytes utilizing a second lab-in-syringe setup. Following its optimization, the D-LIS-FB platform showed excellent linearity, in combination with good method precision (i.e., RSD < 3.4%) and trueness. Moreover, the limits of detection were 0.25 µg L-1 for Cd(II), 0.13 µg L-1 for Cu(II), and 0.37 µg L-1 for Pb(II), confirming the applicability of the proposed system for metal analysis at trace levels. As a proof-of-concept, the developed versatile system was utilized for the analysis of different environmental, food, and biological samples.


Asunto(s)
Cadmio , Cobre , Cadmio/química , Cobre/análisis , Cetonas , Plomo , Poliésteres , Solventes , Análisis Espectral , Jeringas
18.
J Chromatogr A ; 1680: 463432, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36041251

RESUMEN

In this study, an "all-in-one" microextraction device was designed and fabricated for the extraction of doxorubicin and its two metabolites from rat plasma prior to their determination by high performance liquid chromatography coupled to fluorescence detector. A sol-gel-based sorbent was synthesized in situ and incorporated within two conjoined porous polypropylene tubes together with a cylindrical magnetic bar in order to avoid the need of an external stirring bar. Among other sorbents investigated, the moderately polar sol-gel poly(tetrahydrofuran) was found to be advantageous due to its high affinity toward the target analytes. Systematic investigation of the critical parameters affecting the adsorption and the desorption step was carried out. Due to the "built-in" filtration mechanism of the porous microextraction capsules, the isolation of the analytes was performed directly in the plasma matrix without any previous sample pretreatment (i.e., protein precipitation, centrifugation, etc.). The proposed method was validated in terms of linearity, accuracy, precision, specificity, sensitivity, and stability according to the FDA guidelines. The limits of detection ranged between 1 - 2 ng mL-1 while the lower limits of quantitation of the analytes were calculated as 10 ng mL-1. The accuracy (% relative error) was found within -9.7 - 15.3% under both intra- and inter-day conditions. The precision was better than 13.4% in all cases. ComplexGAPI index was employed to present the green attributes of the developed protocol from the preparation of the microextraction device to the final determination of the analytes. Finally, the applicability of the fabricated stand-alone extraction device was demonstrated in the analysis of the target analytes in rat plasma after intravenous administration of doxorubicin in order to assess its pharmacokinetic profile.


Asunto(s)
Doxorrubicina , Microextracción en Fase Líquida , Adsorción , Animales , Cromatografía Líquida de Alta Presión , Límite de Detección , Microextracción en Fase Líquida/métodos , Ratas , Microextracción en Fase Sólida/métodos
19.
Food Chem ; 394: 133548, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35759833

RESUMEN

A novel sol-gel pyridylethylthiopropyl functionalized silica-based sorbent was synthesized and utilized in an on-line column preconcentration system coupled with flame atomic absorption spectrometry for metal determination. The developed platform was used for the determination of Pb(II) and Cu(II) in beer samples, since there are limited automatic methods for routine analysis of alcoholic beverage. For a preconcentration time of 60 s, the calculated enhancement factors were 96 for Cu(II) and 130 for Pb(II). The limits of detection were 0.33 µg L-1 and 1.98 µg L-1 for Cu(II) and Pb(II), respectively. Moreover, the RSDs were less than 2.9% indicating good method precision. The method was successfully employed for the analysis of commercially available beers. The Cu(II) content of the samples was 1.6-21.8 µg L-1 and the Pb(II) content was 7.3-17.6 µg L-1. The developed manifold exhibited operational simplicity and good performance characteristics, indicating its potential utilization for routine analysis in beer industry.


Asunto(s)
Cerveza , Cobre , Cerveza/análisis , Cobre/química , Plomo/análisis , Gel de Sílice , Extracción en Fase Sólida/métodos , Espectrofotometría Atómica/métodos
20.
J Chromatogr A ; 1676: 463237, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35752147

RESUMEN

Four novel mixed-mode zwitterionic silica-based functionalized with strong moieties sorbents were synthesized and evaluated through solid-phase extraction (SPE) to determine acidic and basic drugs in environmental water samples. All sorbents had the same functionalization: quaternary amine and sulfonic groups and C18 chains so that hydrophobic and strong cationic exchange (SCX) and strong anionic exchange (SAX) interactions could be exploited, in addition, two of them had carbon microparticles embedded. All sorbents retained both acidic and basic compounds in the preliminary assays but only the basic compounds were retained selectively through ionic exchange interactions when a clean-up step was introduced. The SPE method was therefore optimized to promote the selective retention of the basic compounds, initially with the two best-performing sorbents. After optimization of the SPE protocol, these sorbents were evaluated for the analysis of environmental water samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method with the best-performing sorbent was then validated with 100 mL of river samples and 50 mL of effluent wastewater samples in terms of apparent recoveries (%Rapp) spiking samples at 50 ng/L (river) and 200 ng/L (river and effluent), matrix effect, linear range, method quantification and detection limits, repeatability, and reproducibility. It should be highlighted that %Rapp ranged from 40 to 85% and matrix effects ranged from -17 to -4% for spiked river samples. When the method was applied to river and effluent wastewater samples, most compounds were found in the range from 24 to 1233 ng/L with detection limits from 1 to 5 ng/L.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Ácidos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Gel de Sílice , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...